EMPIRE XPU Tutorial 3D Design – Conformal Antenna

Overview: Topics

- Start from scratch
- 3D structure definition
- Local Coordinate System
- Polygon in LCS
- Wire Ports in LCS
- Mesh hints
- S-Parameters, impedances
- Far field

Μ

Step 1: Start

- Start Empire XPU 8.00
 from Desktop
- Click "New Project"
- Set "Drawing Unit": 1 mm
- OK
- Choose File \rightarrow Save as
- Create new project folder
 "Conformal" and save file

Froject Wizard					? ×
New Project	Open Project	Examples	Templates	Tutorials	
General					Getting Started
Structure Type:	Standard				Tunner I
Solvers:	EM				Open the Getting Started Manual
Drawing Unit:	1	mm 💌			
Frequency					EMPIRE Open the Full Manual
Stop Frequency:	20	GHz 🔻			
Target Frequency:	: 10	GHz 🔻			
Loss Calculation					
Dielectrics:	lossless				
Conductors:	lossless				
					Visit our Empire Youtube Channel

Step 2: Ground

Step 3: Substrate

Step 4: Local Coordinate System

- Select Iso z View
- Right click on center of edge (yellow snap point: center edge)
- Select "Grid" "Get LCS from Face" "Current Position"
- Open Coordinate System LCS1
- Right click on "w", apply "Mirror" for the axes to obtain orientation:

Coordinate Systems Herein WCS
⊢wcs
 LCS 1 (active)
PO: 0 -11 0
- u: -1 0 0
v: 0 0.242536 0.970143
W: 0 070143 0 0242536
🕨 Mesh Info (Cells: 🥄 ^{Aquire}
Field Monitors & Rotate
wailables with a block

Comments:

- An LCS can be defined on any surface
- w is always orthogonal, u is chosen to be parallel to one edge
- Here, it is advantageous that u is parallel to lower edge

Step 5: Patch

- Click "Create Group"
- Rename group to "Patch" (red color)
- Zoom in (wheel forward)
- Click "Create Polygon"
- 1. Left click at u=4.5 v=4
- 2. Left click at u=-4.5 v=4
- 3. Left click at u=-4.5 v=16
- 4. Left click at u=4.5 v=16
- 5. Left click at u=4.5 v=4 to close
- Zoom in
- Left click at w=0.1
- Check Points
- Zoom extents

Comments:

• After creation the point list is displayed. Coordinates and height can be adjusted if needed

Datasa						
General	Editor		ł			
Name: SPACE_POLY 2						
Group: Height:	Patch (con	ductor)	. 0.1			
Point 1	4.5	16.0				
Point 2	-4.5	16.0		-		
Point 3	-4.5	4.0				
Point 4	4.5	4.0				
			ок Са	incel		
	Gar	relaute System: 2:108 1				

Step 6: Port

- Create group Port
- Switch off groups "Substrate" and "Patch" (click light bulb)
- Click "Create Source"
- Select tab "Lumped", choose "Wire Port"
- Left click at u=2.5, v=10.5, w~-1 (Face)*
- Switch on group "Patch"(click light bulb)
- Left click at u=2.5, v=10.5,w=0.1 (Face)*
- Switch on group "Substrate"
- Click on "Simulation Setup" Tab "Mesh"
- Set "Mesh Hint" y = "min 0.1"**
- Set "Mesh Hint" z = "min 0.1"**
- Close OK

Comments:

•* Due to surface snap coordinates are dependent and w is determined automatically

• ** A minimum cell size is entered to avoid very dense meshing in the port area

Step 7: Monitor & Simulation

Groups ",Coordinate Systems" – Right Click on "WCS" Ground conductor) Select "Set Active" Substrate Right Click on "Field Monitors" (dielectric) Select "EM Far field" – "Boundary" Patch conductor) Keep Settings, Click OK Port *(active)* Open Field Monitors – FIELDMON 1 – Display Origin conductor) Coordinate Systems Double Click on y, enter "-10"* WCS (active) LCS 1 Mesh Info (Cells: 0.0) Click "Start Simulation" Field Monitors Confirm OK FIELDMON 1 (EM Farfield) Display Origin x: 0.0 v: -10.0 z: 10.0 Variables

Comments:

9

• *The Display Orign is used for position the 3D pattern relative to structure

Step 8: Results

• Wait for State: Finished

Status						
State:						
Remote:						
Time:	01:21					
Steps:	23508					
Time to finish all Steps:						
Performance:	712 MC/s					
Warnings:						
Errors:						
Energy Dec. (E/H):	49/49 dB					
Field Monitor Conv. Error:	0.0%					

Tab 2D Results – Plot Type: Voltage (Time Domain)

Plot Type: Scattering Parameters

Comments: • Click Update button to refresh list

Step 9: Far field

- Plot Type: Farfield
- Plot Format: Polar Lin. Magnitude
- 🖪 ២ ២ ២ ភ្នុង ជុំ 🗘 🖣 📾 🖬 🖬 🗐

- Select 3D Results Tab
- Choose Iso Z view
- Right click on pattern
- Select "Edit"
- In "Display" options set "Plot Style" = Wireframe, OK

Comments:

• By default, the absolute component is selected in 3D display. Select other components by choosing "Polarization"

孫目 77 9 - 4 - 21 21 11 11 11 11 11

Step 10: Option: Array definition

- Save as "array"
- Switch to 3D Design tab
- Right click on Patch "Select Group's Objects"
- Right click on Port "Select Group's Objects
- Click "Copy & Rotate"
- Keep Point and Axis x:0, y:0, z:0
- Click Ok
- Enter "90@3" for 3 copies with 90 degree rotation

Comments:

• Optionally "Load Project": File/Single_Patch.emx to begin with Step 10

Step 11: Option: Array Setup

Step 12: Array Far field

When finished select 3D

Results Tab

•

Simulation Tab -Voltages

Comments:

• Simulation progress: Energy, Field monitor convergence, Speed or Port Voltages over time steps

- Simulation is finished when either:
 - a. Energy & Field Monitor Convergence limits are reached
 - b. Maximum number of time steps is reached

Phase (Dela

Step 13: Option: Array Coupling

Port Editor

2

3

Table Style: Detail View

Number 🔶 Excitation

- Switch to 3D Design tab
- Click "Port Setup Wizard"
- Enter unique numbers for each port (double click on number)
- In Excitation column, deselect all but one port
- Click OK
- Run Simulation
- S-Parameters in 2D Results

Comments:

• If Port 1 is excited the following S-parameters will be calculated in result folder sub-1:

• s11, s21, s31, s42

15 Nov-19 © IMST GmbH - All rights reserved

Group

Port (conductor) 1

Port (conductor) 1

Port (conductor) 1

Port (conductor) 1

Amplitude

Load Impedance

50

50

50